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Abstract
We discuss several proposals for astrophysical and cosmological tests of
quantum theory. The tests are motivated by deterministic hidden-variables
theories, and in particular by the view that quantum physics is merely an
effective theory of an equilibrium state. The proposed tests involve searching
for nonequilibrium violations of quantum theory in: primordial inflaton
fluctuations imprinted on the cosmic microwave background, relic
cosmological particles, Hawking radiation, photons with entangled partners
inside black holes, neutrino oscillations and particles from very distant sources.

PACS numbers: 98.80.Qc, 14.60.Pq, 04.70.−s

Dedicated to Professor G-C Ghirardi on the occasion of his seventieth birthday.

1. Introduction

It is important that we continue to test quantum theory in new and extreme conditions: as with
any scientific theory, its domain of validity can be determined only by experiment. For this
purpose, it is helpful to have theories that agree with quantum theory in some limit, and deviate
from it outside that limit. Examples of such theories include models of wavefunction collapse,
pioneered by Pearle [1–3] and by Ghirardi, Rimini and Weber [4], and hidden-variables
theories with nonstandard probability distributions (‘quantum nonequilibrium’), advocated in
particular by the author [5–13].

While it is possible that quantum theory might turn out to break down in a completely
unexpected way, and in a completely unexpected place, the chances of a successful detection
of a breakdown would seem higher, the better motivated the theory describing the breakdown.

For some 25 years, extreme tests of quantum theory focused mostly on experiments
demonstrating violations of Bell’s inequality. These tests were well motivated: at the time (say
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in the 1970s), it was reasonable to suspect that locality might force a deviation from quantum
correlations for entangled states of widely separated systems. However, as the evidence for
violations of Bell’s inequalities accumulated, the long-range correlations predicted by quantum
theory came to be widely accepted as a fact of nature, and the known domain of validity of
quantum theory was extended into an important region.

Tests of collapse models again stem from a compelling motivation: to test the
superposition of quantum states as far as possible into the macroscopic regime. Will a
sufficiently macroscopic superposition decay via corrections to the Schrödinger equation?
Such experiments are still being carried out, and again (for as long as they prove negative)
extend our confidence in the validity of quantum theory in an important way.

In this paper, we discuss a number of new proposals for extreme tests of quantum theory,
proposals that are motivated by thinking about quantum physics from the point of view of
deterministic hidden variables.

A deterministic hidden-variables theory provides a mapping ω = ω(M, λ) from initial
(‘hidden’) parameters λ to outcomes ω of a quantum experiment (or ‘measurement’) specified
by the settings M of macroscopic equipment. In addition, in order to make contact with the
statistics observed over an ensemble of similar experiments (with fixed M and variable λ), it
must be assumed that over an ensemble the hidden variables λ have some distribution ρ(λ),
so that (for example) the expectation value of ω will be given by

〈ω〉 =
∫

dλ ρ(λ)ω(M, λ). (1)

For the hidden-variables theory to provide a successful account of quantum phenomena, there
must exist a particular distribution ρQT(λ) such that all corresponding expectation values 〈ω〉QT

match the prediction 〈ω〉QT = Tr(ρ̂�̂) of standard quantum theory (for some density operator
ρ̂ and ‘observable’ �̂).

A concrete example is provided by the pilot-wave theory of de Broglie [14] and Bohm
[15].2 There, the outcome of a single run of an experiment is determined by the initial (‘hidden’)
configuration X(0) of the system, together with the initial guiding wavefunction �(X, 0), so
that λ consists of the pair X(0),�(X, 0). For an ensemble with the same �(X, 0) (and the
same apparatus settings M), we have λ = X(0), and the quantum equilibrium distribution
ρQT(λ) is given by PQT(X, 0) = |�(X, 0)|2.

It is not usually appreciated that the distribution ρQT(λ) is conceptually quite distinct from
the mapping ω = ω(M, λ). The latter is a property of each individual run of the experiment,
specifying the ‘dynamics’ whereby each value of λ determines an outcome ω; while the
former is a property of the ensemble, specifying the distribution of ‘initial conditions’ for
the parameters λ. As we have argued at length elsewhere [5–13], if one takes deterministic
hidden-variables theories seriously, one must conclude that quantum theory is merely the
phenomenology of a special ‘quantum equilibrium’ distribution ρQT(λ). In principle,
there exists a wider physics beyond the domain of quantum theory, with ‘nonequilibrium’
distributions ρ(λ) �= ρQT(λ) and non-quantum expectation values 〈ω〉 �= 〈ω〉QT. This
paper concerns the possibility of detecting such deviations from quantum theory, through
astrophysical and cosmological observations.
2 At the 1927 Solvay conference, de Broglie proposed what we now know as the first-order pilot-wave dynamics of
a (nonrelativistic) many-body system, with a guiding wave in configuration space determining the particle velocities,
and he applied it to simple quantum phenomena such as interference, diffraction and atomic transitions. In 1952,
Bohm showed that the general quantum theory of measurement was a consequence of de Broglie’s dynamics (when
applied to an initial equilibrium ensemble), even though Bohm actually wrote the dynamics in a pseudo-Newtonian
or second-order form based on acceleration. For a detailed analysis of de Broglie’s construction of pilot-wave theory,
as well as for a full discussion of the respective contributions of de Broglie and Bohm, see [16] (which also includes
an English translation of de Broglie’s 1927 Solvay report).
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2. Quantum nonequilibrium: what, when and where?

What exactly should one look for? Quantum nonequilibrium opens up an immense range of
possible new phenomena. Here, we focus on deviations from the following quintessentially
quantum effects:

• Single-particle interference. For example, in a double-slit experiment with particles of
wavelength 2π/k, incident on a screen with slits separated by a distance a, at large
distances behind the screen quantum theory predicts a modulation

|ψ(θ)|2 ∝ cos2
(

1
2kaθ

)
(2)

in the distribution of single-particle detections at angular deviation θ (measured from the
normal to the screen). If the experiment is performed with one particle at a time, each
outcome θ will (in a hidden-variables theory) be determined by a mapping θ = θ(M, λ)

(where again M specifies the experimental arrangement). The quantum distribution (2)
will correspond to the quantum equilibrium distribution ρQT(λ), while nonequilibrium
ρ(λ) �= ρQT(λ) will generally imply deviations from (2)—for example, an anomalous
blurring of the interference fringes.

• Malus’ law for two-state systems. For example, for single photons incident on a polarizer,
quantum theory predicts a modulation

p+
QT(	) = 1

2 (1 + P cos 2	) (3)

of the transmission probability, where P is the (ensemble) polarization of the beam
and 	 is the angle of the polarizer. (For P = 1, p+

QT(	) = cos2 	.) As shown
elsewhere [12], Malus’ law (3) is equivalent to the additivity of expectation values for
non-commuting observables in a two-state system, and such additivity generically breaks
down in quantum nonequilibrium. Deviations from (3) then provide a convenient signature
of nonequilibrium.

• Gaussian vacuum fluctuations. Standard quantum field theory predicts that seemingly
empty space is the seat of field fluctuations corresponding to a Gaussian random process,
with a specified variance for each mode k. Quantum nonequilibrium for vacuum fields
will generically imply a departure from Gaussianity and deviations from the predicted
variance (or width) for each k.

The possible breakdown of Malus’ law deserves special comment. Any two-state quantum
system has observables σ̂ ≡ m · σ̂ taking values σ = ±1, where m is a unit vector in Bloch
space and σ̂ is a Pauli spin operator. Quantum theory predicts that, for an ensemble with
density operator ρ̂, the probability p+

QT(m) for an outcome σ = +1 of a quantum measurement
of σ̂ is given by

p+
QT(m) = 1

2 (1 + 〈σ̂ 〉) = 1
2 (1 + m · P), (4)

where P = 〈σ̂〉 = Tr(ρ̂σ̂) is the mean polarization. (For photons, an angle θ on the Bloch
sphere corresponds to a physical angle 	 = θ/2.) It is specifically the linearity in m of the
quantum expectation value

EQT(m) ≡ 〈m · σ̂〉 = Tr(ρ̂m · σ̂) = m · P

that is equivalent to expectation additivity for incompatible observables. The proof is
straightforward [12]. For an arbitrary unit vector m = ∑

i cimi , where {m1, m2, m3}
is an orthonormal basis in Bloch space, expectation additivity implies that EQT(m) =∑

i ciEQT(mi ). Invariance of EQT(m) under a change of basis mi → m′
i then implies
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that EQT(m) = m · P where P ≡ ∑
i EQT(mi )mi is a vector with norm 0 � P � 1. Using

expectation additivity again, we have P = 〈σ̂〉.
A deterministic hidden-variables theory applied to a two-state system will provide a

mapping σ = σ(m, λ) that determines the measurement outcomes σ = ±1. As shown in
[12], for an arbitrary distribution ρ(λ) �= ρQT(λ) of hidden variables λ the nonequilibrium
expectation value

E(m) ≡ 〈σ(m, λ)〉 =
∫

dλ ρ(λ)σ (m, λ)

will generally not take the linear form m · P for some Bloch vector P, and the nonequilibrium
outcome probability

p+(m) = 1
2 (1 + E(m)) (5)

will generally not take the quantum form (4). Both the linearity and the additivity are
generically violated in quantum nonequilibrium.

A natural parameterization of nonequilibrium outcome probabilities p+(m) for two-state
systems may be obtained by expanding p+(m) in terms of spherical harmonics, with the
unit vector m specified by angular coordinates (θ, φ) on the Bloch sphere. For example, a
probability law that includes a quadrupole term,

p+(m) = 1
2 (1 + m · P + (m · b)(m · P)) (6)

(for some non-zero vector b), corresponding to a nonlinear expectation value

E(m) = m · P + (m · b)(m · P), (7)

would signal a failure of expectation additivity and a violation of quantum theory.
More generally, one might consider nonlinear expectation values

E(m) = miPi + mimjQij + mimjmkRijk + · · ·
(summing over repeated indices), where Qij , Rijk, . . . are tensors in Bloch space. The
experimental challenge is to set upper bounds on the magnitudes |Qij |, |Rijk|, . . . , for systems
in extreme conditions. The theoretical challenge, of course, is to provide precise predictions
for Qij , Rijk, . . . .

The statistical predictions of quantum theory and of quantum field theory have of course
been verified in countless experiments. For two-state systems, for example, all known
experimental data are consistent with Qij = Rijk = · · · = 0. From a hidden-variables
perspective, however, there are good reasons to expect that the experiments performed so far
yield agreement with quantum theory. This is because all the experiments performed so far
have been done with systems that have had a long and violent astrophysical history. Atoms in
the laboratory, for example, have a history stretching back to the formation of stars, or even
earlier (to big bang nucleosynthesis), during which these atoms have undergone numerous
complex interactions with other systems. Every degree of freedom we have access to has a
complex past history of interaction with other degrees of freedom, a history that ultimately
merges with the history of the early universe. This fact is highly significant, because it suggests
that the quantum equilibrium distribution ρQT(λ) observed today could have emerged from
past interactions, via a process of relaxation (analogous to relaxation to thermal equilibrium
in ordinary physics).

Relaxation to quantum equilibrium has been studied in some detail for the case of pilot-
wave theory. The quantity H = ∫

dX P ln(P/|�|2) (equal to minus the relative entropy of
an arbitrary distribution P with respect to |�|2) obeys a coarse-graining H-theorem analogous
to the classical one [5, 7, 9]; and numerical simulations for simple two-dimensional systems
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[17, 18] show a rapid (approximately exponential) decay of the coarse-grained H-function,
H̄ (t) → 0, with a corresponding coarse-grained relaxation P̄ → |�|2 (given appropriate
initial conditions on P and �, see [9]).

In pilot-wave theory, then, given the known past history of the universe, there is every
reason to expect the systems being examined today to be in quantum equilibrium. Presumably,
similar conclusions would hold in any reasonable (deterministic) hidden-variables theory: we
expect that the known past interactions will generate a similar relaxation ρ(λ) → ρQT(λ).

In this scenario, quantum theory is merely an effective theory, describing the physics of
an equilibrium state that emerged some time in the remote past. Considering this scenario
further suggests clues as to where quantum theory might break down.

The obvious place to look is the very early universe. At sufficiently early times, quantum
nonequilibrium ρ(λ) �= ρQT(λ) may have still existed. How can one probe such early
times experimentally? One possibility is provided by inflationary cosmology, according to
which primordial vacuum fluctuations in a scalar field φ (present during an early period of
exponential spatial expansion) are responsible for the early inhomogeneities that seeded the
formation of large-scale structure in the universe and that left an observable imprint on the
cosmic microwave background (CMB). This suggests that primordial quantum nonequilibrium
could have a measurable effect on the CMB temperature anisotropy [19]. Another possibility
is based on the idea [9] that certain particle species may have decoupled so early that they did
not have time to reach quantum equilibrium: such nonequilibrium relic particles could still
exist today. One is then led to consider testing quantum theory for relic particles from very
early times.

Instead of looking for residual nonequilibrium from the distant past, would it be possible
to generate nonequilibrium today? It has been suggested [20] that gravitation may be capable
of generating quantum nonequilibrium. In particular, information loss in black holes might be
avoided if Hawking radiation consisted of nonequilibrium particles, since the final state could
then contain more information than the conventional (quantum) final state. Following this line
of reasoning, one is led to suggest that if one half of a bipartite entangled state fell behind the
event horizon of a black hole, the other half would evolve away from quantum equilibrium.
Such a situation might occur naturally via atomic cascade emissions in black-hole accretion
discs.

There are also theoretical reasons for suspecting that quantum-gravitational effects could
induce pure-to-mixed transitions in, for example, oscillating neutrinos. Motivated once again
by the possible avoidance of information loss, such transitions might be accompanied by the
generation of quantum nonequilibrium.

Finally, the possibility of gravitational effects generating nonequilibrium at the Planck
scale motivates us to consider tests of quantum probabilities at very small lengthscales, for all
particles whatever their origin. As we shall see, in the right circumstances the spreading of
wave packets for particles emitted by remote sources can act as a cosmological ‘microscope’,
expanding tiny deviations from quantum theory to observable scales.

We shall now examine these suggestions in turn.

3. Inflation as a test of quantum theory in the early universe

The temperature anisotropy �T (θ, φ) ≡ T (θ, φ)−T of the microwave sky may be expanded
in terms of spherical harmonics as

�T (θ, φ)

T
=

∞∑
l=2

+l∑
m=−l

almYlm(θ, φ). (8)
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It is usual to regard the observed T (θ, φ) as a realization of a stochastic process, such that
the underlying probability distribution for each coefficient alm is independent of m (as follows
if the probability distribution for T (θ, φ) is assumed to be rotationally invariant). For large
enough l, the (theoretical) ensemble average 〈|alm|2〉 may then be accurately estimated as

〈|alm|2〉 ≈ 1

2l + 1

+l∑
m=−l

|alm|2 ≡ Cl. (9)

The anisotropy �T (θ, φ) is believed to have been produced by (classical) inhomogeneities
on the last scattering surface (when CMB photons decoupled from matter). There is a well-
established theory expressing the alm in terms of a Fourier-transformed ‘primordial curvature
perturbation’ Rk (see, for example [19, 21] for details). Assuming that the underlying
probability distribution for Rk is translationally invariant, it may be shown that

Cl = 1

2π2

∫ ∞

0

dk

k
T 2(k, l)PR(k), (10)

where T is a function encoding the relevant astrophysical processes and

PR(k) ≡ 4πk3

V
〈|Rk|2〉 (11)

is the primordial power spectrum for Rk (with V a normalization volume). Data for the Cl

suggest that PR(k) ≈ const (an approximately scale-free spectrum) [22].
Now, inflationary cosmology predicts that Rk is given by [21]

Rk = −
[

H

φ̇0
φk

]
t=t∗(k)

, (12)

where H ≡ ȧ/a is the (approximately constant) Hubble parameter of the inflating universe
(with metric dτ 2 = dt2 − a2 dx2 and scale factor a = a(t)), φ0 and φ are respectively the
spatially homogeneous and inhomogeneous parts of the inflaton field, and the right-hand
side is evaluated at a time t∗(k) a few e-folds after the (exponentially expanding) physical
wavelength λphys = 2πa(t)/k of the mode k exceeds (or ‘exits’) the Hubble radius H−1. To
a first approximation, inflation predicts that φk will have (at time t∗(k)) a quantum variance

〈|φk|2〉QT = V

2(2π)3

H 2

k3
(13)

and a scale-invariant power spectrum

PQT
φ (k) ≡ 4πk3

V
〈|φk|2〉QT = H 2

4π2
(14)

(where 〈|φk|2〉QT is obtained from the Bunch–Davies vacuum in de Sitter space, for
λphys � H−1). This results in a scale-free spectrum (in the slow-roll limit Ḣ → 0) for
Rk,

PQT
R (k) = 1

4π2

[
H 4

φ̇2
0

]
t∗(k)

, (15)

in approximate agreement with what is observed.
Quantum nonequilibrium in the Bunch–Davies vacuum would yield deviations from

(13). Further, in the pilot-wave version of quantum field theory, it may be shown [19] that
any (microscopic) quantum nonequilibrium that is present at the onset of inflation will be
preserved during the inflationary phase (instead of relaxing), and will in fact be transferred to
macroscopic lengthscales by the growth of physical wavelengths λphys ∝ a(t) ∝ eHt .
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This is shown by calculating the de Broglie–Bohm trajectories for the inflaton field.
Writing φk =

√
V

(2π)3/2 (qk1 + iqk2) (for real qkr , r = 1, 2), the Bunch–Davies wavefunctional
takes the product form �[qkr , t] = ∏

kr ψkr (qkr , t), and the de Broglie equation of motion for
qkr is

dqkr

dt
= 1

a3

∂skr

∂qkr

,

where ψkr = |ψkr | eiskr . Using the known form for ψkr , it is found that

dqkr

dt
= − k2Hqkr

k2 + H 2a2
,

which has the solution

qkr (η) = qkr (0)
√

1 + k2η2,

where η = −1/Ha is the conformal time (running from −∞ to 0). Given this solution
for the trajectories, one may easily construct the exact evolution of an arbitrary distribution
ρkr (qkr , η) (generally �= |ψkr (qkr , η)|2). The time evolution amounts to a homogeneous
contraction of both |ψkr |2 and ρkr . At times η < 0, |ψkr |2 is a contracting Gaussian packet
of width �kr (η) = �kr (0)

√
1 + k2η2. In the late-time limit η → 0, |ψkr |2 approaches a

static Gaussian of width �kr (0) = H/
√

2k3. At times η < 0, ρkr is a contracting arbitrary
distribution of width Dkr (η) = Dkr (0)

√
1 + k2η2 (with arbitrary Dkr (0) ). In the late-time

limit η → 0, ρkr approaches a static packet of width Dkr (0) (the asymptotic packet differing
from the earlier packet by a homogeneous rescaling of q). We then have the result

Dkr (t)

�kr (t)
= (const in time) ≡

√
ξ(k), (16)

where for simplicity we assume that (like �kr ) the nonequilibrium width Dkr depends on k
and t only. (For each mode, the factor ξ(k) may be defined at any convenient fiducial time.)
Thus, for each mode k, the widths of the nonequilibrium and equilibrium distributions remain
in a fixed ratio over time.

Thus, at least to a first approximation (treating the inflationary phase as an exact de
Sitter expansion), if quantum nonequilibrium exists at early times it will not relax during the
inflationary phase. Instead, it will indeed be preserved, and be transferred to macroscopic
scales by the expansion of physical wavelengths λphys. This process is especially striking in
the late-time limit, where both ρkr and |ψkr |2 become static. Once the mode exits the Hubble
radius, the nonequilibrium becomes ‘frozen’, while λphys continues to grow exponentially. The
‘frozen’ nonequilibrium then corresponds to a physical lengthscale that grows exponentially
with time, from microscopic to macroscopic scales. And of course, once inflation has
ended, curvature perturbations Rk at macroscopic lengthscales are transferred to cosmological
lengthscales by the subsequent (post-inflationary) Friedmann expansion.

Writing the nonequilibrium variance as

〈|φk|2〉 = 〈|φk|2〉QTξ(k), (17)

the resulting power spectrum for Rk is then just the usual result (15) multiplied by the factor
ξ(k):

PR(k) = ξ(k)

4π2

[
H 4

φ̇2
0

]
t∗(k)

. (18)

Early quantum nonequilibrium will generally break the scale invariance of the primordial
power spectrum PR(k) (at least in pilot-wave theory). Measurements of the angular power
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spectrum Cl of the microwave sky may be used—in the context of inflationary theory—to
constrain the primordial ‘nonequilibrium function’ ξ(k) [19].

Other measurable effects of early nonequilibrium include violation of the scalar–tensor
consistency relation, non-Gaussianity and non-random primordial phases [19].

Work in progress attempts to predict features of the function ξ(k), by studying the evolution
of nonequilibrium in an assumed pre-inflationary era: preliminary results suggest that, at the
beginning of inflation, nonequilibrium is more likely to have survived at large wavelengths
(small k).

Note that primordial nonequilibrium ξ(k) �= 1 might be generated during the inflationary
phase by novel gravitational effects at the Planck scale (see section 5)—as well as, or instead
of, being a remnant of an earlier nonequilibrium epoch.

Finally, we remark that Perez et al [23] have also considered modifying quantum theory in
an inflationary context. Their primary motivation is the quantum measurement problem (which
is of course especially severe in cosmology). In particular, they discuss how predictions for
the CMB could be affected by a dynamical collapse of the wavefunction in the early universe.

4. Relic nonequilibrium particles

The early universe contains a mixture of effectively massless (relativistic) particles. According
to the standard analysis, relaxation to thermal equilibrium between different particle species
depends on two competing effects: interactions driving different species towards mutual
equilibrium, and spatial expansion making different species fall out of mutual equilibrium.
Relaxation occurs only if the former overcomes the latter, that is, only if the mean free time
tcol between collisions is smaller than the timescale texp ≡ a/ȧ of spatial expansion. In a
Friedmann model (perhaps pre- or post-inflationary), a ∝ t1/2 and texp ∝ 1/T 2 (where T is
the photon temperature). Thus, if tcol = tcol(T ) falls off slower than 1/T 2, at sufficiently high
temperatures tcol � texp and thermal equilibrium between the species will not be achieved—or
at least, not until the temperature has dropped sufficiently for tcol � texp to hold. Similarly,
species that are in thermal equilibrium will subsequently decouple if tcol becomes larger than
texp as the universe expands and T decreases (as occurs for CMB photons at recombination).
The thermal history of the universe then depends crucially on the functions tcol(T ), which in
turn depend on the relevant scattering cross sections.

We expect that relaxation to quantum equilibrium in an expanding universe will likewise
depend on two competing effects: the usual relaxation seen in flat spacetime, and the stretching
of the nonequilibrium lengthscale caused by spatial expansion [9].

As already mentioned, numerical simulations in pilot-wave theory show a very efficient
relaxation for systems with two degrees of freedom (given appropriate initial conditions).
These simulations were carried out on a static background (flat) spacetime, with a wavefunction
equal to a superposition of many different energy eigenstates, for nonrelativistic particles in
a two-dimensional box [17] and in a two-dimensional harmonic oscillator potential [18].
The latter case is mathematically equivalent to that of a single decoupled mode k of a free
scalar field on Minkowski spacetime: again writing φk =

√
V

(2π)3/2 (qk1 + iqk2) as above, the
wavefunction ψk = ψk(qk1, qk2, t) of the mode satisfies

i
∂ψk

∂t
= −1

2

(
∂2

∂q2
k1

+
∂2

∂q2
k2

)
ψk +

1

2
k2

(
q2

k1 + q2
k2

)
ψk, (19)

and the de Broglie velocities for qkr are q̇kr = ∂sk/∂qkr (with ψk = |ψk| eisk ), just as in the
pilot-wave theory of a nonrelativistic particle of unit mass in a harmonic oscillator potential
in the qk1 − qk2 plane. Thus we deduce that, in the absence of gravity, for a single mode
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k in a superposition of many different states of definite occupation number, the probability
distribution ρk(qk1, qk2, t) will rapidly relax to equilibrium, ρk → |ψk|2 (on a coarse-grained
level, again given appropriate initial conditions).

Now, in a flat expanding universe, again with metric dτ 2 = dt2 − a2 dx2, the pilot-wave
equations for a decoupled mode become [19]

i
∂ψk

∂t
= − 1

2a3

(
∂2

∂q2
k1

+
∂2

∂q2
k2

)
ψk +

1

2
ak2

(
q2

k1 + q2
k2

)
ψk (20)

and

q̇k1 = 1

a3

∂sk

∂qk1
, q̇k2 = 1

a3

∂sk

∂qk2
. (21)

How does the presence of a = a(t) affect the time evolution? If λphys  H−1, we recover
the Minkowski-space evolution—the expansion timescale H−1 ≡ a/ȧ being much larger than
the timescale ∼λphys (with c = 1) over which ψk evolves—and so a superposition of many
different states of definite occupation number (for the mode k) will again rapidly relax to
equilibrium. On the other hand, if λphys � H−1, we expect ψk and the associated de Broglie-
Bohm trajectories to be approximately static over timescales such that λphys ∝ a(t) expands
significantly, so that relaxation is suppressed. The spatial expansion then results in a transfer
of nonequilibrium to larger lengthscales (as we saw in late-time inflation).

There are then two ‘competing’ effects: the usual relaxation to equilibrium, and the
transfer of nonequilibrium to larger lengthscales. The former dominates for λphys  H−1, the
latter for λphys � H−1. In a radiation-dominated phase, with a ∝ t1/2, we have λphys ∝ t1/2

and H−1 ∝ t . Thus, at sufficiently small times, all physical wavelengths are larger than the
Hubble radius (λphys > H−1), and the above reasoning suggests that relaxation to equilibrium
will be suppressed (until later times when λphys becomes smaller than H−1). While further
study is needed—such as numerical simulations based on (20), (21), and consideration of
entangled and also mixed states—we seem to have a mechanism whereby spatial expansion at
very early times can suppress the normal relaxation to equilibrium.

Similar conclusions have been arrived at in terms of the pilot-wave theory of particles [9].
If the distribution of particle positions contains nonequilibrium below a certain lengthscale,
the spatial expansion will transfer the nonequilibrium to larger lengthscales. Further, a simple
estimate τ ∼ �/kT of the relaxation timescale suggests that relaxation will be suppressed
when τ � texp ∼ (1 sec)(1 MeV/kT )2—that is, when kT � 1018 GeV ≈ 0.1kTP or t � 10tP
(where TP and tP are respectively the Planck temperature and time). We emphasize that this
estimate, while suggestive, is only heuristic.

If relaxation to quantum equilibrium is indeed suppressed at sufficiently early times, in
a realistic cosmological model, this raises the exciting possibility that if the universe indeed
began in a state of quantum nonequilibrium, then remnants of such nonequilibrium could have
survived to the present day—for particles that decoupled at times so early that equilibrium
had not yet been reached. Relic gravitons are believed to decouple at T ∼ TP, and there may
well be other, more exotic particles (associated with physics beyond the standard model) that
decoupled soon after TP. A subsequent inflationary era would presumably dilute their density
beyond any hope of detection, but in the absence of inflation it is possible that such particles
could have a significant abundance today. Further, such relic nonequilibrium particles might
annihilate or decay, producing nonequilibrium photons—which could be detected directly,
and tested for violations of Malus’ law or for anomalous diffraction and interference patterns.
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5. Tests of quantum theory with black holes

According to pilot-wave theory, once quantum equilibrium is reached it is not possible to
escape from it (leaving aside the remote possibility of rare fluctuations [7]). A universe
in quantum equilibrium is then analogous to a universe stuck in a state of global thermal
equilibrium or thermodynamic ‘heat death’. Further, in quantum equilibrium it is not possible
to harness nonlocality for signalling, just as in global thermal equilibrium it is not possible to
convert heat into work [5–8].

However, pilot-wave theory has been well developed only for non-gravitational physics.
Indeed, despite much effort, standard quantum theory too has yet to be extended to gravity. It
is then conceivable that quantum equilibrium as we know it will turn out to be gravitationally
unstable: in a future hidden-variables theory incorporating gravitation, there could exist
processes that generate quantum nonequilibrium.

One such process might be the formation and evaporation of a black hole, which arguably
allows a pure quantum state to evolve into a mixed one [24]. It has been suggested that the
resulting ‘information loss’ (the inability in principle to retrodict the initial state from the
final one) could be avoided if the outgoing Hawking radiation were in a state of quantum
nonequilibrium, enabling it to carry more information than conventional radiation could
[20]. A mechanism has been suggested, whereby (putative) nonequilibrium behind the event
horizon is transmitted to the exterior region via the entanglement between the ingoing and
outgoing radiation modes [20]. It has also been proposed that the decreased ‘hidden-variable
entropy’ Shv (minus the subquantum H -function, suitably generalized to mixed states [20]) of
the outgoing nonequilibrium radiation should balance the increase in von Neumann entropy
SvonN = −Tr(ρ̂ ln ρ̂) associated with the pure-to-mixed transition:

�(Shv + SvonN) = 0. (22)

At the time of writing, the proposed conservation rule (22) is only a simple and somewhat
arbitrary hypothesis, relating as it does two very different kinds of entropy, Shv and SvonN

(though it has been shown [20] that these entropies must be related even in non-gravitational
processes, in ways that need to be explored further). If the pure-to-mixed transition does indeed
generate nonequilibrium, it might be hoped that (22) will hold at least as an order-of-magnitude
estimate.

The above (obviously speculative) idea could be tested, should Hawking radiation from
microscopic black holes ever be observed. Primordial black holes of mass M ∼ 1015 g are
expected to be evaporating today, producing (among other particles) gamma-rays peaked at
∼100 MeV [25]. Such radiation has been searched for, so far with no definitive detection, and
further searches are under way. Should γ -rays from the evaporation of primordial black holes
ever be detected, we propose that their polarization probabilities be carefully checked (for
example by Compton polarimetry) for deviations from the standard modulation ( 3). Another
possibility, according to theories with large extra dimensions [26], is that microscopic black
holes could be produced in collisions at the TeV scale. If so, their decay products could be
tested for deviations from (3).

If the entanglement between ingoing and outgoing Hawking radiation modes does indeed
provide a channel for nonlocal information flow from behind the horizon, then one would
expect a similar process to occur if, for an ‘EPR-pair’ initially in the exterior region, one half
of the entangled state fell behind the horizon. For an ensemble of such pairs, the particles
left in the exterior region should evolve away from quantum equilibrium—by an amount that
can be estimated from the proposed rule (22) (where �SvonN is obtained by tracing over the
infalling particles).
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It has been argued that, if the information loss envisaged by Hawking is to be avoided by
some form of nonlocal information flow, then such flow must occur even while the hole is still
macroscopic [27]. Similar arguments lead us to conclude that, even for a macroscopic black
hole, allowing one half of an EPR-pair to fall behind the horizon will cause the other half to
evolve away from quantum equilibrium—over a timescale small compared to the evaporation
timescale [20].

This motivates us to propose another test. Most galactic nuclei contain a supermassive
black hole (M ∼ 106 − 1010M�) surrounded by a thin accretion disc [28]. It is well
established that x-ray emission lines, in particular the Kα iron line at 6.4 keV, may be used to
probe the spacetime geometry in the strong gravity region close to the event horizon [29]. The
intrinsically narrow line is broadened and skewed by relativistic effects, with an extended red
wing caused by the gravitational redshift of photons emitted from very near the horizon. This
much is well known. Now, the idea is to identify an atomic cascade emission that generates
entangled photon pairs at small radii, such that a significant fraction of the photons reaching
Earth have partners that fell behind the horizon. Polarization measurements of the received
photons would then provide a test of Malus’ law (3)—and a probe of possible nonequilibrium,
for example in the form of a quadrupole probability law (6)—for photons entangled with
partners inside the black hole.

The feasibility of this experiment has been discussed in detail elsewhere [20, 30]. Here,
we summarize what appear to be the main points:

• In a 0 − 1 − 0 two-photon cascade, for example, the polarization state shows a strong and
phase-coherent entanglement only if the emitted momenta are approximately antiparallel
[31]. This may be realized in our experiment by restricting attention to photons with the
largest redshift: these have emission radii re closest to the horizon at r+ = M +

√
M2 − a2

(where a is the specific angular momentum of the hole), and as re → r+ the photons will
escape—and avoid being absorbed by the hole or the accretion disc—only if they are
directed parallel to the surface of the disc [32].

• The effect will be diluted by received photons with (a) no cascade partners, (b) cascade
partners that were not captured by the black hole, (c) cascade partners that were captured
but did not have appropriately directed momenta at the point of emission.

• Scattering along the line of sight could degrade the entanglement between the outgoing
and ingoing photons, and might cause relaxation ρ(λ) → ρQT(λ). This may be minimized
by an appropriate choice of photon frequency and by choosing an accretion disc viewed
face-on (with a clear line of sight to the central black hole).

• If the nonequilibrium distribution ρ(λ) �= ρQT(λ) for the received photons depends on
the spatial location of the emission, the sought-for effect could be smeared out by spatial
averaging over the emitting region. If instead ρ(λ) is independent of location, such
averaging will have no effect.

• Only about 0.6% of the observed Kα photons are expected to have Lα cascade partners
[20, 30]. We hope that other relativistically broadened lines will be discovered, with a
larger fraction of cascade partners3.

Note that true deviations from (3) may be distinguished from ordinary noise and
experimental errors by comparing results from the astronomical source with results from
a laboratory source. Also, if the effect exists, it will be larger towards the red end of the
(broadened) emission line, because these photons are emitted closer to the horizon and are
therefore more likely to have partners that were captured.

3 Broadened lines from oxygen, nitrogen and carbon have in fact already been reported [33].
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6. Neutrino oscillations

Microscopic quantum-gravitational effects might induce a pure-to-mixed evolution of the
quantum state in a system of oscillating neutrinos, resulting in damping and decoherence
effects that might be observable over astrophysical and cosmological (or even just atmospheric)
path lengths—see, for example, [33–39]. Such evolution may be modelled by corrections to
the usual unitary evolution of the density operator ρ̂(t). Writing

dρ̂

dt
= −i[Ĥ , ρ̂] − D(ρ̂),

the extra term D breaks the usual conservation of Tr(ρ̂2). It is usually assumed that D takes a
Lindblad form, and that the mean energy Tr(ρ̂Ĥ ) is conserved. Under the usual assumptions,
the term D generates an increase in von Neumann entropy SvonN = −Tr(ρ̂ ln ρ̂) over time.
(See, for example, [34].)

A detailed phenomenological parameterization of D has been developed, and extensive
comparisons with data have been made [34, 35, 39, 40]. If we follow the hypotheses of section 5
(assuming that D originates, for example, from the formation and evaporation of microscopic
black holes), then any such pure-to-mixed transition will generate quantum nonequilibrium, of
a magnitude that might be constrained by (22). This will result in nonequilibrium anomalies
in the composition of an oscillating neutrino beam.

Consider the simple case of just two flavours, labelled νµ and ντ . Lepton number
eigenstates |νµ〉, |ντ 〉 are linear combinations

|νµ〉 = |ν1〉 cos α + |ν2〉 sin α, |ντ 〉 = −|ν1〉 sin α + |ν2〉 cos α

of mass eigenstates (masses m1,m2) where α is the mixing angle. For a beam of energy
E � m1,m2, terms in |ν1〉 and |ν2〉 propagate with relative phases eikt/2 and e−ikt/2 respectively,
where k ≡ (

m2
2 − m2

1

)/
2E [41].

The oscillating two-state system may be represented in Bloch space, with |ν1〉 and
|ν2〉 corresponding to unit vectors respectively up and down the z-axis. We then have a
Hamiltonian Ĥ = −(k/2)σ̂z (where σ̂z is a Pauli operator). For an arbitrary density operator
ρ̂ = 1

2 (Î + P · σ̂), the mean polarization P = Tr(ρ̂σ̂) then evolves as dP/dt = k × P where
k ≡ (0, 0,−k). An initial pure state ρ̂(0) = |νµ〉〈νµ| with

P(0) = (sin 2α, 0, cos 2α) (23)

evolves into a pure state with

P(t) = (sin 2α cos kt,−sin 2α sin kt, cos 2α) (24)

(where |P(t)| = 1), and the quantum survival probability for νµ shows the well-known
oscillation

p
µ

QT(t) = Tr(ρ̂(t)|νµ〉〈νµ|) = 1 − 1
2 (1 − cos kt) sin2 2α

over a neutrino path length l � t .
In the simplest generalization to a pure-to-mixed evolution, we have [34]

Ṗx = kPy − γPx, Ṗy = −kPx − γPy, Ṗz = 0,

where γ � 0 is a phenomenological parameter. An initial pure state ρ̂(0) = |νµ〉〈νµ| now
evolves into a mixed state with

P(t) = (e−γ t sin 2α cos kt,−e−γ t sin 2α sin kt, cos 2α) (25)

(where now |P(t)| < 1), and the oscillations in the survival probability

p
µ

QT(t) = 1 − 1
2 (1 − e−γ t cos kt) sin2 2α
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are damped over distances l � 1/γ . The (initially zero) von Neumann entropy SvonN(t)

increases with time, reaching a limiting value

SvonN(∞) = −cos2 α ln(cos2 α) − sin2 α ln(sin2 α).

If such pure-to-mixed transitions exist, it is possible that they are accompanied by a
transition from quantum equilibrium to quantum nonequilibrium, along the lines considered
in section 5. Applying the ansatz (22), the nonequilibrium distribution would satisfy the
constraint

Shv(t) = −SvonN(t), (26)

where in a general hidden-variables theory Shv takes the form

Shv = −
∫

dλρ ln(ρ/ρQT).

According to (26), the hidden-variable entropy Shv decreases with path length l � t , in a
manner that is fully determined by the dynamics of the pure-to-mixed transition.

Quantum nonequilibrium ρ(λ) �= ρQT(λ) would change the composition of a neutrino
beam, in a manner depending on the details of the hidden-variables theory. Generally speaking,
the quantum survival probability for νµ may be written as

p
µ

QT(t) = 1
2 (1 + P(0) · P(t)), (27)

which is again Malus’ law (4) for a two-state system: p
µ

QT(t) is just the probability p+
QT(m)

at time t for an ‘up’ outcome of a quantum measurement along the axis specified by the unit
vector m = P(0) in Bloch space (corresponding to measuring for the presence of νµ), where
the measurement is carried out on a system with polarization P(t). As discussed in section 2,
the probability law (4) is equivalent to expectation additivity for incompatible observables,
and both are generically violated in nonequilibrium [12].

For example, applying the quadrupole probability law (6) to the case at hand, we have a
nonequilibrium survival probability for νµ,

pµ(t) = p
µ

QT(t) + 1
2 (P(0) · b(t))(P(0) · P(t)), (28)

where P(0) and P(t) are given by (23) and (25) respectively, and where the time dependence
of b(t) (with b(0) = 0) corresponds to the generation of nonequilibrium during the pure-to-
mixed transition (perhaps in accordance with the constraint (26)). In the limit t → ∞, for
example, the composition of the beam is shifted from the quantum νµ fraction

p
µ

QT(∞) = 1 − 1
2 sin2 2α (29)

to the nonequilibrium νµ fraction

pµ(∞) = p
µ

QT(∞) + 1
2 (bx(∞) sin 2α + bz(∞) cos 2α) cos2 2α. (30)

7. Particles from very distant sources

Finally, we consider a method for testing quantum probabilities at tiny lengthscales, a method
that is based on the huge spreading of the wave packet for particles emitted by very distant
(astrophysical or cosmological) sources. In the right circumstances, such spreading can cause
microscopic deviations from the Born rule (if they exist) to be expanded up to observable
lengthscales. We shall restrict ourselves here to the case of pilot-wave theory, though the
argument can be generalized. As we shall see, there are a number of practical difficulties with
this method, and it is unclear whether they could all be overcome in a real experiment. Still,
the idea might be worth considering further.
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To explain the basic mechanism, we first consider a single nonrelativistic particle (labelled
i) in free space, with initial wavefunction ψi(x, 0) (at t = 0) localized around xi with a width
�i(0), where at later times ψi(x, t) spreads out to a width �i(t). For large t, we have
approximately �i(t) ∼ �t/(m�i(0)) (where ∼�/�i(0) is the initial quantum momentum
spread). One might think, for example, of a spreading Gaussian packet. Now consider (in pilot-
wave theory) the time evolution of an initial distribution ρi(x, 0) that differs from |ψi(x, 0)|2 at
a ‘nonequilibrium lengthscale’ δ(0) at t = 0. (We mean this in the following sense: if ρi(x, 0)

and |ψi(x, 0)|2 are each coarse grained or averaged over a volume ε3, the difference between
them is erased if and only if ε � δ(0).) Because ρi and |ψi |2 obey the same continuity
equation, with the same (de Broglian) velocity field, the ratio fi(x, t) ≡ ρi(x, t)/|ψi(x, t)|2
is conserved along particle trajectories (where nonequilibrium corresponds to fi �= 1). Thus,
along a trajectory x(t) ≡ gt (x(0)) we have fi(x(t), t) = fi(x(0), 0), and the distribution at
time t may be written as

ρi(x, t) = |ψi(x, t)|2fi

(
g−1

t (x), 0
)
, (31)

where g−1
t is the inverse map from x(t) to x(0). If the map gt : x(0) → x(t) is essentially an

expansion—with small (localized) volumes V0 of x(0)-space being mapped to large volumes Vt

of x(t)-space—then the inverse map g−1
t : x(t) → x(0) will be essentially a compression. And

because the spreading of |ψi |2 is precisely the spreading of an initial equilibrium distribution
by the same map gt , the factor by which gt expands an initial volume will be approximately
∼(�i(t)/�i(0))3, so that Vt ∼ (�i(t)/�i(0))3V0. Thus, if fi(x, 0) deviates from unity on a
lengthscale δ(0), then fi(g

−1
t (x), 0) will deviate from unity on an expanded lengthscale

δ(t) ∼ (�i(t)/�i(0))δ(0). (32)

Therefore, from (31), the distribution ρi(x, t) at time t will show deviations from |ψi(x, t)|2
on the expanded nonequilibrium lengthscale δ(t) [8, 9].

As a simple example (assuming that the above nonrelativistic reasoning extends to
photons in some appropriate way), consider a photon with an initial wave packet width
�i(0) ∼ 10−6 cm, emitted by an atom in the neighbourhood of a quasar at a distance
d ∼ 1027 cm. The expansion factor is �i(t)/�i(0) ∼ d/�i(0) ∼ 1033, and an initial
nonequilibrium lengthscale of (for example) δ(0) ∼ 10−33 cm is expanded up to δ(t) ∼ 1 cm.
(A photon would of course be found on the surface of a sphere of radius ct , but distances on
the spherical surface still expand by a factor ∼d/�i(0).)

So far we have considered the ideal case of a pure ensemble of identical initial
wavefunctions ψi(x, 0) centred around the same point xi and expanding in free space. To
be realistic, we need to consider a mixed ensemble emitted by a source of finite spatial extent4

and propagating in a tenuous (intergalactic) medium.
Let the initial density operator be a mixture

ρ̂(0) =
∑

i

pi |ψi〉〈ψi |

of wavefunctions ψi(x, 0) centred at different points xi , with pi being the probability for the
ith state. For simplicity, let us first assume that ψi(x, 0) = ψ(x − xi , 0), so that we have a
mixture with the ‘same’ wavefunction spreading out from different locations xi . The quantum
equilibrium probability density at time t is

ρQT(x, t) = 〈x|ρ̂(t)|x〉 =
∑

i

pi |ψ(x − xi , t)|2. (33)

4 Averaging over the spatial extent of the source is important here because the hidden variables are particle positions—
and not some more abstract (or perhaps internal) degrees of freedom λ whose distribution might be independent of
the spatial location of the emission.
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For each (quantum-theoretically) pure subensemble with guiding wavefunction ψi(x, t), we
may define an actual distribution ρi(x, t) (generally distinct from |ψi(x, t)|2), while for the
whole ensemble the distribution may be written as

ρ(x, t) =
∑

i

piρi(x, t)

(where in general ρ(x, t) �= ρQT(x, t) ). Let us also assume that, at t = 0, each ρi(x, 0)

takes the form ρi(x, 0) = π(x − xi , 0), where π(x − xi , 0) deviates from |ψ(x − xi , 0)|2 at
a nonequilibrium lengthscale δ(0), so that we have a mixture with the ‘same’ nonequilibrium
distribution π(x − xi , t) spreading out from different locations xi . (In work to be published
elsewhere, we shall consider dropping this last assumption.) The ensemble distribution is then

ρ(x, t) =
∑

i

piπ(x − xi , t). (34)

From our discussion of the pure case, we know that π(x−xi , t) will deviate from |ψ(x−xi , t)|2
on an expanded lengthscale δ(t) ∼ (�(t)/�(0))δ(0), where �(t) is the width of |ψ |2 at
time t.

Will a similar difference be visible between the spatially averaged distributions (33) and
(34)? The answer depends on whether the linear size R of the source is larger or smaller than
the (pure) expanded nonequilibrium lengthscale δ(t). If R � δ(t), the spatial averaging will
erase the differences between π(x−xi , t) and |ψ(x−xi , t)|2, resulting in ρ(x, t) ≈ ρQT(x, t).
If, on the other hand, R � δ(t), the spatial averaging cannot erase the nonequilibrium, and the
observed ensemble distribution ρ(x, t) will deviate from the quantum expression ρQT(x, t) on
the expanded lengthscale δ(t).

We then arrive at the following conclusion (tentatively ignoring the effects of scattering
and of a mixture of different wavefunctions ψi(x, 0) �= ψ(x − xi , 0)). For a distant source of
linear extension R, the spreading of wave packets from an initial width �(0) to a larger width
�(t) will generate an observable expansion of the nonequilibrium lengthscale from δ(0) to
δ(t) ∼ (�(t)/�(0))δ(0), provided the ‘no smearing’ condition

R � δ(t) (35)

is satisfied.
Before examining the feasibility of (35) ever being satisfied in practice, let us first indicate

how our analysis—carried out so far in free space—may be extended to include the effect of
scattering by the tenuous intergalactic medium.

Our strategy is as follows. We write the perturbed de Broglie–Bohm trajectory x(t)

(guided by a perturbed wavefunction that includes scattering terms) as x(t) = xfree(t) + δx(t),
where xfree(t) denotes the trajectory in free space. As we have seen, the spreading of the
trajectories xfree(t) generates an expanding nonequilibrium lengthscale δ(t). The question
is: will the trajectory perturbations δx(t) cause the expanding nonequilibrium to relax to
equilibrium? Considering again the property of de Broglian dynamics, that (for a pure
subensemble) f ≡ ρ/|ψ |2 is conserved along trajectories, a little thought shows that a
necessary condition for the erasure of nonequilibrium on the expanded lengthscale δ(t) is that
the perturbations δx(t) have a magnitude at least comparable to δ(t). If, on the contrary,

|δx(t)|  δ(t), (36)

it will be impossible for the perturbations to erase the expanding nonequilibrium—simply
because the trajectories will not be able to distribute the values of f in a manner required
for the distributions ρ and |ψ |2 to become indistinguishable on a coarse-graining scale of
order δ(t).
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A straightforward argument suggests that the ‘no relaxation’ condition (36) is indeed likely
to be realized in practice. To estimate the magnitude |δx(t)|, at large distances from the source
we may approximate the wavefunction as a plane wave eik·x incident on a tenuous medium
modelled by fixed scattering centres with positions xs . In a time-independent description of
the scattering process, each scattering centre (associated with some potential) contributes a
scattered wave which, at large distances from xs , takes the asymptotic form fs(θ, φ) eikrs /rs ,
where rs ≡ |x − xs | and (θ, φ) are standard angular coordinates defined relative to k as the
‘z-axis’. The scattering amplitude fs(θ, φ) is related to the differential cross section by the
usual formula dσs/d� = |fs(θ, φ)|2. For simplicity we may consider identical and isotropic
scattering centres: fs(θ, φ) = f = const. for all s, so that f 2 = σ/4π where σ is the cross
section. The total (time-independent) wavefunction is then

ψ(x) = eik·x − 1

2

√
σ

π

∑
s

eik·xs
eikrs

rs

(37)

(where eik·xs is a relative phase for each source). We assume that the scattering centres are more
or less uniformly distributed in space with a number density n and mean spacing (1/n)1/3.
The intergalactic medium is mainly composed of ionized hydrogen, with an electron number
density n ∼ 10−7 cm−3 and mean spacing ∼200 cm. For most cases of interest, the incident
wavelength 2π/k will be much smaller than 200 cm, justifying use of the asymptotic form
∼eikrs /rs for the scattered waves. (In an appropriate extension of this nonrelativistic model to
photons, wavelengths 2π/k � 200 cm correspond to radio waves.) In this approximation, the
de Broglie–Bohm trajectories take the form

x(t) = x(0) + (�k/m)t + δx(t),

where δx(t) is a small perturbation. We expect δx(t) to behave like a random walk, with
|δx(t)| ∝ √

t . If this is the case, then because δ(t) ∝ �(t) ∝ t (for large t), the no
relaxation condition (36) will necessarily be satisfied for sufficiently large t. It then appears that
scattering by the intergalactic medium is unlikely to offset the expansion of the nonequilibrium
lengthscale.

In contrast, the no smearing condition (35) is very severe, and is unlikely to be realized
except in special circumstances. In our example above, of a photon emitted by an atom in
the vicinity of a quasar, the expansion factor �(t)/�(0) ∼ 1033 suggests that the tantalizing
Planck lengthscale lP ∼ 10−33 cm at the time of emission may be within reach of experiments
performed on the detected photon now at a lengthscale ∼1 cm. Unfortunately, according to
(35) any nonequilibrium at the Planck scale would be smeared out unless the source had a size
R � 1 cm, which seems much too small to be resolvable in practice (at the assumed distance
d ∼ 1027 cm).

This seemingly insurmountable obstacle could perhaps be overcome, however, by
considering a combination of: (a) shorter wavelengths, corresponding to a smaller �(0)

and a larger δ(t); and (b) special astrophysical circumstances in which remarkably small
sources can in fact be resolved.

As an example of (a), one may consider a gamma-ray emission (say from an atomic
nucleus) with �(0) ∼ 10−12 cm, again from a distance d ∼ 1027 cm, yielding an expansion
factor �(t)/�(0) ∼ d/�(0) ∼ 1039. To probe the Planck scale (δ(0) ∼ 10−33 cm) then
requires a source size R � δ(t) ∼ 106 cm = 10 km, which is comparable to what is believed
to be the size of the central engine of a typical gamma-ray burst [42]. (Photons from the
central engine of a gamma-ray burst are not normally expected to propagate essentially freely
immediately after emission, and there are in any case many uncertainties concerning the
mechanism of such bursts; even so, the example just quoted does suggest that the no smearing
constraint (35) might in fact be satisfied by a judicious choice of wavelength and source.)
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As examples of (b), we quote the following instances of remarkably small sources that
either have already been resolved in practice, or that might be in the near future:

• Nanosecond radio bursts have been observed coming from the Crab pulsar [43]. The
observations have a time resolution �t ≈ 2 ns, corresponding to an emitting source
diameter �c�t ≈ 60 cm. Isolated sub-pulses were detected at this time resolution, and
interpreted as caused by the collapse of highly localized (∼60 cm) structures in a turbulent
plasma. Whatever their nature, these objects are the smallest ever resolved outside the
solar system. For our purposes, the Crab pulsar is too close (d ∼ 1022 cm) and radio
wavelengths are too large. Even so, it is clear that the detection of transients on very
small timescales—at an appropriate distance and wavelength—offers a way of resolving
sources satisfying the no smearing condition (35).

• An ultraviolet (≈170 eV) ‘hotspot’ of radius �60 m has been detected on the surface of
the Geminga pulsar (at a distance d ∼ 1021 cm from Earth) [44]. While the source is
again too close for our purposes, both the wavelength and the source size are promising.

• Microsecond gamma-ray bursts of energy �100 MeV (or wavelength �10−12 cm)—which
might originate from exploding primordial black holes—should be observable with the
SGARFACE experiment [45]. A burst time structure with resolution �t ≈ 10−6 s
corresponds to a source size �c�t ≈ 104 cm = 0.1 km. Microsecond gamma-ray bursts
at cosmological distances (d ∼ 1027 − 1028 cm) would then seem to satisfy our criteria
(except that the possibility of essentially free propagation from emission to detection still
needs to be considered as well).

Finally, we must consider dropping the simplifying assumption that the packets ψi(x, 0)

emitted by the source differ only in their initial location. In general, we will have
ψi(x, 0) �= ψ(x − xi , 0), with different packets ψi emitted from different locations xi . Here
we seem to encounter the most severe practical problem of all. As in the case of perturbations
from the intergalactic medium, a necessary condition for the different wavefunctions to lead to
an erasure of nonequilibrium on the expanded lengthscale δ(t) is that trajectories xi (t), xj (t)

(with the same initial point x(0)) generated by respective wavefunctions ψi(x, t), ψj (x, t)

should differ by an amount at least comparable to δ(t). If instead

|xi (t) − xj (t)| � δ(t) (38)

for all i, j (and for all x(0)), it will be impossible for the expanding nonequilibrium to be
erased upon averaging over the mixture of wavefunctions.

Unfortunately, it is unclear whether the ‘no mixing’ condition (38) could ever be realized
in practice. The wavefunctions ψi(x, t), ψj (x, t) would have to be almost the same, to an
extremely high accuracy, in order to generate trajectories xi (t), xj (t) satisfying (38). To
see this, as a rough estimate one may take xi (t) ∼ (�pi/m)t , where �pi is the quantum
momentum spread for the wave function ψi ; and similarly for xj (t). Condition (38) then reads

|�pi − �pj | � �

�(0)

δ(0)

�(0)
(39)

(taking all initial packets to have approximately the same width �(0) and nonequilibrium
lengthscale δ(0)). Since the factor δ(0)/�(0) is very tiny, the momentum spreads of the
emitted packets must be very tightly constrained, and there seems to be no obvious way in
which this could happen.

If the method proposed in this section is to work in practice, some extra ingredient is
needed to ensure that (39) is satisfied. At the time of writing, we are unable to say if such an
ingredient is likely to be found.
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8. Conclusion

We have discussed several proposals for astrophysical and cosmological tests of quantum
theory. Our general aim has been to test the foundations of quantum theory in new and
extreme conditions, guided in particular by the view that quantum theory is an emergent
description of an equilibrium state. While we have often used the pilot-wave theory of de
Broglie and Bohm, much of our reasoning applies to general deterministic hidden-variables
theories.

Pilot-wave theory is the only hidden-variables theory of broad scope that we possess.
Possibly, it is a good approximation to the correct theory; or perhaps it is merely a helpful
stepping stone towards the correct theory. Certainly, pilot-wave theory is a simple and natural
deterministic interpretation of quantum physics. On the other hand, it could be that the true
deterministic hidden-variables theory (if there is one) is quite different, and that in some
key respects pilot-wave theory is actually misleading. After all, the observable statistics of
the quantum equilibrium state obscure many of the details of the underlying (nonlocal and
deterministic) physics. Since all of our experience so far has been confined to the equilibrium
state, it would not be surprising if we were led astray in our attempts to construct a subquantum
(or hidden-variables) theory. Obviously, many possible theories could underlie the equilibrium
physics that we see. The ultimate aim of the proposals made in this paper is to find an empirical
window that could help us determine what the true underlying theory actually is.

It is usually assumed that quantum theory is a fundamental framework in terms of which
all physical theories are to be expressed. There is, however, no reason to believe a priori that
quantum theory has an unlimited domain of validity. For 200 years it was generally believed
that Newtonian mechanics was a fundamental framework for the whole of physics. Yet, today
we know that Newtonian mechanics is merely an emergent approximation (arising from the
classical and low-energy limits of quantum field theory). Whether or not quantum theory will
suffer a similar fate remains to be seen.
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